4.6 Article

Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00238.2010

关键词

insulin resistance; free fatty acids; mitochondrial dysfunction; reactive oxygen species; mitochondrial biogenesis

资金

  1. National Institutes of Health [DK-073808, ES-03456]

向作者/读者索取更多资源

Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299: E1096-E1105, 2010. First published September 28, 2010; doi:10.1152/ajpendo.00238.2010.-The type of free fatty acids (FFAs), saturated or unsaturated, is critical in the development of insulin resistance (IR), since the degree of saturation correlates with IR. We compared the effects of the saturated FFA palmitate, the unsaturated FFA oleate, and a mixture of each on the production of mitochondrial reactive oxygen species (mtROS), mitochondrial DNA (mtDNA) damage, mitochondrial function, apoptosis, and insulin-signaling pathway in skeletal muscle cells. Only palmitate caused a significant increase of mtROS production, which correlated with concomitant mtDNA damage, mitochondrial dysfunction, induction of JNK, apoptosis, and inhibition of insulin signaling. Blocking de novo synthesis of ceramide abolished the effects of palmitate on mtROS production, viability, and insulin signaling. Oleate alone did not cause mtROS generation and mtDNA damage, and its addition to palmitate prevented palmitate-induced mtDNA damage, increased total ATP levels and cell viability, and prevented palmitate-induced apoptosis and inhibition of insulin-stimulated Akt (Ser(473)) phosphorylation. The peroxisome proliferator activator receptor-gamma coactivator 1 alpha (PGC-1 alpha) protein level and promoter activity were decreased at concentrations of palmitate >= 0.5 mM, whereas addition of oleate increased both PGC-1 alpha level and promoter activity. Expression of the mitochondrial transcription factor (TFAM) was significantly diminished after palmitate but not oleate treatment. Addition of the ROS scavenger, N-acetylcystein (NAC), to palmitate restored both the expression and promoter activity of PGC-1 alpha as well as TFAM expression. We propose that 1) mtROS generation is the initial event in the induction of mitochondrial dysfunction and consequent apoptosis and the inhibition of insulin signaling and that 2) oleate ameliorates palmitate-induced mitochondrial dysfunction and thus may contribute to the prevention of palmitate-induced IR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据