4.6 Article

Increased fat mass, decreased myofiber size, and a shift to glycolytic muscle metabolism in adolescent male transgenic mice overexpressing IGFBP-2

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00492.2009

关键词

insulin-like growth factor-binding protein-2; skeletal muscle; growth; enzyme; signal transduction

向作者/读者索取更多资源

Rehfeldt C, Renne U, Sawitzky M, Binder G, Hoeflich A. Increased fat mass, decreased myofiber size, and a shift to glycolytic muscle metabolism in adolescent male transgenic mice overexpressing IGFBP-2. Am J Physiol Endocrinol Metab 299: E287-E298, 2010. First published May 25, 2010; doi:10.1152/ajpendo.00492.2009.-To elucidate the functional role of insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) for in vivo skeletal muscle growth and function, skeletal muscle cellularity and metabolism, expression of signal molecules, and body growth and composition were studied in a transgenic mouse model overexpressing IGFBP-2. Postnatal growth rate of transgenic mice was reduced from day 21 of age by 6-8% compared with nontransgenic controls. At 10 wk of age body lean protein and moisture percentages were lower, whereas fat percentage was higher in IGFBP-2 transgenic mice. Muscle weights were reduced (-13% on day 30 of age, -14% on day 72), which resulted from slower growth of myofibers in size but not from decreases in myofiber number. The reduction in muscle mass was associated with lower total DNA, RNA, and protein contents as well as greater DNA/RNA and protein/RNA ratios. The percentage of proliferating (Ki-67-positive) nuclei within myofibers was reduced (3.4 vs. 5.8%) in 30-day-old transgenic mice. These changes were accompanied by slight reductions in specific p44/42 MAPK activity (-18% on day 72) and, surprisingly, by increased levels of phosphorylated Akt (Ser(473)) (+25% on day 30, +66% on day 72). The proportion of white glycolytic fibers (55.9 vs. 53.5%) and the activity of lactate dehydrogenase (+8%) were elevated in 72-day-old transgenic mice. Most of the differences observed between transgenic and nontransgenic mice were more pronounced in males. The results suggest that IGFBP-2 significantly inhibits postnatal skeletal myofiber growth by decreasing myogenic proliferation and protein accretion and enhances glycolytic muscle metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据