4.6 Article

Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00324.2010

关键词

transmission electron microscopy; cell compartmentation; immobilization; aging; metabolism

资金

  1. Danish National Research Council (Council for Independent Research, Medical Sciences)
  2. Lundbeck Foundation
  3. Danish Rheumatology Association
  4. Faculty of Health Sciences
  5. University of Copenhagen, Team Denmark Elite Association
  6. Ministry of Culture Committee on Sports Research

向作者/读者索取更多资源

Previous studies have shown that skeletal muscle glycogen and mitochondria are distributed in distinct subcellular localizations, but the role and regulation of these subcellular localizations are unclear. In the present study, we used transmission electron microscopy to investigate the effect of disuse and aging on human skeletal muscle glycogen and mitochondria content in subsarcolemmal (SS), intermyofibrillar (IMF), and intramyofibrillar (intra) localizations. Five young (similar to 23 yr) and five old (similar to 66 yr) recreationally active men had their quadriceps muscle immobilized for 2 wk by whole leg casting. Biopsies were obtained from m. vastus lateralis before and after the immobilization period. Immobilization induced a decrement of intra glycogen content by 54% (P < 0.001) in both age groups and in two ultrastructurally distinct fiber types, whereas the content of IMF and SS glycogen remained unchanged. A localization-dependent decrease (P = 0.03) in mitochondria content following immobilization was found in both age groups, where SS mitochondria decreased by 33% (P = 0.02), superficial IMF mitochondria decreased by 20% (P = 0.05), and central IMF mitochondria remained unchanged. In conclusion, our findings demonstrate a localization-dependent adaptation to immobilization in glycogen and mitochondria content of skeletal muscles of both young and old individuals. Specifically, this suggests that short-term disuse preferentially affects glycogen particles located inside the myofibrils and that mitochondria volume plasticity can be dependent on the distance to the fiber border.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据