4.6 Article

Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.90764.2008

关键词

liver X receptor; Syrian golden hamster; apolipoprotein B

资金

  1. Heart and Stroke Foundation of Ontario [T-6041]
  2. Canadian Institutes of Health Research [MOP12898]
  3. Hospital for Sick Children
  4. Canadian Diabetes Association

向作者/读者索取更多资源

Basciano H, Miller AE, Naples M, Baker C, Kohen R, Xu E, Su Q, Allister EM, Wheeler MB, Adeli K. Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Physiol Endocrinol Metab 297: E462-E473, 2009. First published June 9, 2009; doi: 10.1152/ajpendo.90764.2008. Although the atherogenic role of dietary cholesterol has been well established, its diabetogenic potential and associated metabolic disturbances have not been reported. Diet-induced hamster models of insulin resistance and dyslipidemia were employed to determine lipogenic and diabetogenic effects of dietary cholesterol. Metabolic studies were conducted in hamsters fed diets rich in fructose (40%), fat (30%), and cholesterol (0.05-0.25%) (FFC) and other test diets. Short-term feeding of the FFC diet induced insulin resistance, glucose intolerance, hypertriglyceridemia, and hypercholesterolemia. Prolonged feeding (6-22 wk) of the FFC diet led to severe hepatic steatosis, glucose intolerance, and mild increases in fasting blood glucose, suggesting progression toward type 2 diabetes, but did not induce beta-cell dysfunction. Metabolic changes induced by the diet, including dyslipidemia and insulin resistance, were cholesterol concentration dependent and were only markedly induced on a high-fructose and high-fat dietary background. There were significant increases in hepatic and plasma triglyceride with FFC feeding, likely due to a 10- to 15-fold induction of hepatic stearoyl-CoA desaturase compared with chow levels (P < 0.03). Hepatic insulin resistance was evident based on reduced tyrosine phosphorylation of the insulin receptor-beta, IRS-1, and IRS-2 as well as increased protein mass of protein tyrosine phosphatase 1B. Interestingly, nuclear liver X receptor (LXR) target genes such as ABCA1 were upregulated on the FFC diet, and dietary supplementation with an LXR agonist (instead of dietary cholesterol) worsened dyslipidemia, glucose intolerance, and upregulation of target mRNA and proteins similar to that of dietary cholesterol. In summary, these data clearly implicate dietary cholesterol, synergistically acting with dietary fat and fructose, as a major determinant of the severity of metabolic disturbances in the hamster model. Dietary cholesterol appears to induce hepatic cholesterol ester and triglyceride accumulation, and diet-induced LXR activation (via cholesterol-derived oxysterols) may possibly be one key underlying mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据