4.6 Article

The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.90532.2008

关键词

ubiquitin-proteasome-dependent pathway; disuse; intrinsic apoptotic pathway; protein breakdown; remodeling

资金

  1. Institut National de la Recherche Agronomique
  2. Association Francaise contre les Myopathies
  3. Ministere de l'Enseignement Superieur et de la Recherche

向作者/读者索取更多资源

Vazeille E, Codran A, Claustre A, Averous J, Listrat A, Bechet D, Taillandier D, Dardevet D, Attaix D, Combaret L. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy. Am J Physiol Endocrinol Metab 295: E1181-E1190, 2008. First published September 23, 2008; doi:10.1152/ajpendo.90532.2008.-Immobilization produces morphological, physiological, and biochemical alterations in skeletal muscle leading to muscle atrophy and long periods of recovery. Muscle atrophy during disuse results from an imbalance between protein synthesis and proteolysis but also between apoptosis and regeneration processes. This work aimed to characterize the mechanisms underlying muscle atrophy and recovery following immobilization by studying the regulation of the mitochondria-associated apoptotic and the ubiquitin-proteasome-dependent proteolytic pathways. Animals were subjected to hindlimb immobilization for 4-8 days (I4 to I8) and allowed to recover after cast removal for 10-40 days (R10 to R40). Soleus and gastrocnemius muscles atrophied from I4 to I8 to a greater extent than extensor digitorum longus and tibialis anterior muscles. Gastrocnemius muscle atrophy was first stabilized at R10 before being progressively reduced until R40. Polyubiquitinated proteins accumulated from I4, whereas the increased ubiquitination rates and chymotrypsin-like activity of the proteasome were detectable from I6 to I8. Apoptosome and caspase-3 or -9 activities increased at I6 and I8, respectively. The ubiquitin-proteasome-dependent pathway was normalized early when muscle stops to atrophy (R10). By contrast, the mitochondria-associated apoptotic pathway was first downregulated below basal levels when muscle started to recover at R15 and completely normalized at R20. Myf 5 protein levels decreased from I4 to I8 and were normalized at R10. Altogether, our results suggest a two-stage process in which the ubiquitin-proteasome pathway is rapidly up- and downregulated when muscle atrophies and recovers, respectively, whereas apoptotic processes may be involved in the late stages of atrophy and recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据