4.6 Article

Pathogenic role of Fgf23 in Dmp1-null mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.90201.2008

关键词

fibroblastic growth factor 23; dentin matrix protein 1; autosomal recessive hypophosphatemic rickets; hypophosphatemia; osteomalacia; phosphate homeostasis

资金

  1. NIAMS NIH HHS [R01 AR 045955, R01 AR045955] Funding Source: Medline

向作者/读者索取更多资源

Autosomal recessive hypophosphatemic rickets (ARHR), which is characterized by renal phosphate wasting, aberrant regulation of 1 alpha-hydroxylase activity, and rickets/osteomalacia, is caused by inactivating mutations of dentin matrix protein 1 (DMP1). ARHR resembles autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH), hereditary disorders respectively caused by cleavage-resistant mutations of the phosphaturic factor FGF23 and inactivating mutations of PHEX that lead to increased production of FGF23 by osteocytes in bone. Circulating levels of FGF23 are increased in ARHR and its Dmp1-null mouse homologue. To determine the causal role of FGF23 in ARHR, we transferred Fgf23 deficient/enhanced green fluorescent protein (eGFP) reporter mice onto Dmp1-null mice to create mice lacking both Fgf23 and Dmp1. Dmp1(-/-) mice displayed decreased serum phosphate concentrations, inappropriately normal 1,25(OH) 2D levels, severe rickets, and a diffuse form of osteomalacia in association with elevated Fgf23 serum levels and expression in osteocytes. In contrast, Fgf23(-/-) mice had undetectable serum Fgf23 and elevated serum phosphate and 1,25(OH) 2D levels along with severe growth retardation and focal form of osteomalacia. In combined Dmp1(-/-)/Fgf23(-/-), circulating Fgf23 levels were also undetectable, and the serum levels of phosphate and 1,25(OH) 2D levels were identical to Fgf23(-/-) mice. Rickets and diffuse osteomalacia in Dmp1-null mice were transformed to severe growth retardation and focal osteomalacia characteristic of Fgf23-null mice. These data suggest that the regulation of extracellular matrix mineralization by DMP1 is coupled to renal phosphate handling and vitamin D metabolism through a DMP1-dependent regulation of FGF23 production by osteocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据