4.6 Article

Molecular correlates for maximal oxygen uptake and type 1 fibers

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.90255.2008

关键词

aging; AHNAK; oxidative phosphorylation; exercise

向作者/读者索取更多资源

Maximal oxygen uptake (VO2max) and the amount of type 1 fibers are interrelated, but the underlying unifying molecular mechanisms are poorly understood. To explore these mechanisms, we related gene expression profiles in skeletal muscle biopsies of 43 age-matched men from published datasets with VO2max and the amount of type 1 fibers and replicated some of the findings in muscle biopsies from 154 young and elderly individuals using real-time PCR. We identified 66 probe sets (genes or expressed sequence tags) positively and 83 probe sets inversely correlated with VO2max and 171 probe sets positively and 217 probe sets inversely correlated with percentage of type 1 fibers in human skeletal muscle. Genes involved in oxidative phosphorylation (OXPHOS) showed high expression in individuals with high VO2max, whereas the opposite was not the case in individuals with low VO2max. Instead, genes such as AHNAK and BCL6 were associated with low VO2max. Also, expression of the OXPHOS genes NDUFB5 and ATP5C1 increased with exercise training and decreased with aging. In contrast, expression of AHNAK in skeletal muscle decreased with exercise training and increased with aging. Eleven genes (NDUFB4, COX5A, UQCRB, ATP5C1, ATP5G3, ETHE1, FABP3, ISCA1, MYST4, C9orf3, and PKIA) were positively correlated with both VO2max and the percentage of type 1 fibers. VO2max closely reflects expression of OXPHOS genes, particularly that of NDUFB5 and ATP5C1, in skeletal muscle, suggesting good muscle fitness. In contrast, a high expression of AHNAK was associated with a low VO2max and poor muscle fitness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据