4.6 Article

The acetate recovery factor to correct tracer-derived dietary fat oxidation in humans

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00720.2007

关键词

exogenous fatty acid oxidation; stable isotopes; mass spectrometry

向作者/读者索取更多资源

When using C-13 tracer to measure plasma fat oxidation, an acetate recovery factor should be determined in every subject to correct for label sequestration. Less is known regarding the acetate recovery factor for dietary fatty acid oxidation. We compiled data from six studies to investigate the determinants of the dietary acetate recovery factor (dARF) at rest and after physical activity interventions and compared the effects of different methods of dARF calculation on both the fat oxidation and its variability. In healthy lean subjects, dARF was 50.6 +/- 5.4% dose (n = 56) with an interindividual coefficient of variation of 10.6% at rest and 9.2% after physical activity modifications. The physical activity interventions did not impact dARF, and the intraindividual coefficient of variation was 4.6%. No major anthropological or physiological determinants were detected except for resting metabolic rate, which explains 7.4% of the dARF variability. Applying an individual or an average group dARF did not affect the mean and the variability of the derived dietary lipid oxidation at rest or after physical activity interventions. Using a mean dARF for a group leads to over- or underestimation of fat oxidation of less than 10% in individual subjects. Moreover, the use of a group or individual correction did not affect the significant relationship found between fasting respiratory exchange ratio and dietary fat oxidation. These data indicate that an average dARF can be applied for longitudinal and cross-sectional studies investigating dietary lipid metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据