4.7 Article

Biophysical properties of normal and diseased renal glomeruli

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 300, 期 3, 页码 C397-C405

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00438.2010

关键词

glomerulus; biophysics; HIV-associated neuropathy; Alport syndrome; atomic force microscopy; actin; cytoskeleton

资金

  1. Veterans Affairs Mertit Review award
  2. Leonard Rosenberg Research and Education Foundation
  3. Rammelkamp Center for Research and Education
  4. NIH [RO1DK-083592, DK-59588, K08-DK-073091, R01DK-078314]
  5. NSF [DMR-1006546]
  6. Harvard MRSEC [DMR-0820484]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Materials Research [820484] Funding Source: National Science Foundation

向作者/读者索取更多资源

Wyss HM, Henderson JM, Byfield FJ, Bruggeman LA, Ding Y, Huang C, Suh JH, Franke T, Mele E, Pollak MR, Miner JH, Janmey PA, Weitz DA, Miller RT. Biophysical properties of normal and diseased renal glomeruli. Am J Physiol Cell Physiol 300: C397-C405, 2011. First published December 1, 2010; doi:10.1152/ajpcell.00438.2010.-The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Young's modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Young's moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3 (-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26HIV/nl mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Young's modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据