4.7 Review

Molecular identification of ancient and modern mammalian magnesium transporters

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 298, 期 3, 页码 C407-C429

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00124.2009

关键词

differential regulation; heterologous expression

资金

  1. Canadian Institutes of Health Research [MOP-53288]
  2. Canadian Institute of Nutrition, Metabolism, and Diabetes [NMD-84696]

向作者/读者索取更多资源

Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 298: C407-C429, 2010. First published November 25, 2009; doi: 10.1152/ajpcell.00124.2009.-A large number of mammalian Mg2+ transporters have been hypothesized on the basis of physiological data, but few have been investigated at the molecular level. The recent identification of a number of novel proteins that mediate Mg2+ transport has enhanced our understanding of how Mg2+ is translocated across mammalian membranes. Some of these transporters have some similarity to those found in prokaryocytes and yeast cells. Human Mrs2, a mitochondrial Mg2+ channel, shares many of the properties of the bacterial CorA and yeast Alr1 proteins. The SLC41 family of mammalian Mg2+ transporters has a similarity with some regions of the bacterial MgtE transporters. The mammalian ancient conserved domain protein (ACDP) Mg2+ transporters are found in prokaryotes, suggesting an ancient origin. However, other newly identified mammalian transporters, including TRPM6/7, MagT, NIPA, MMgT, and HIP14 families, are not represented in prokaryotic genomes, suggesting more recent development. MagT, NIPA, MMgT, and HIP14 transporters were identified by differential gene expression using microarray analysis. These proteins, which are found in many different tissues and subcellular organelles, demonstrate a diversity of structural properties and biophysical functions. The mammalian Mg2+ transporters have no obvious amino acid similarities, indicating that there are many ways to transport Mg2+ across membranes. Most of these proteins transport a number of divalent cations across membranes. Only MagT1 and NIPA2 are selective for Mg2+. Many of the identified mammalian Mg2+ transporters are associated with a number of congenital disorders encompassing a wide range of tissues, including intestine, kidney, brain, nervous system, and skin. It is anticipated that future research will identify other novel Mg2+ transporters and reveal other diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据