4.7 Article

Upregulation of store-operated Ca2+ entry in dystrophic mdx mouse muscle

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00524.2009

关键词

skeletal muscle; sarcoplasmic reticulum; muscular dystrophy; STIM1; Orai1; excitation-contraction coupling

资金

  1. National Health and Medical Research Council (NHMRC
  2. Australia)

向作者/读者索取更多资源

Edwards JN, Friedrich O, Cully TR, von Wegner F, Murphy RM, Launikonis BS. Upregulation of store-operated Ca2+ entry in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 299: C42-C50, 2010. First published April 28, 2010; doi:10.1152/ajpcell.00524.2009.-Store-operated Ca2+ entry (SOCE) is an important mechanism in virtually all cells. In adult skeletal muscle, this mechanism is highly specialized for the rapid delivery of Ca2+ from the transverse tubule into the junctional cleft during periods of depleting Ca2+ release. In dystrophic muscle fibers, SOCE may be a source of Ca2+ overload, leading to cell necrosis. However, this possibility is yet to be examined in an adult fiber during Ca2+ release. To examine this, Ca2+ in the tubular system and cytoplasm were simultaneously imaged during direct release of Ca2+ from sarcoplasmic reticulum (SR) in skeletal muscle fibers from healthy (wild-type, WT) and dystrophic mdx mouse. The mdx fibers were found to have normal activation and deactivation properties of SOCE. However, a depression of the cytoplasmic Ca2+ transient in mdx compared with WT fibers was observed, as was a shift in the SOCE activation and deactivation thresholds to higher SR Ca2+ concentrations ([Ca2+](SR)). The shift in SOCE activation and deactivation thresholds was accompanied by an approximately threefold increase in STIM1 and Orai1 proteins in dystrophic muscle. While the mdx fibers can introduce more Ca2+ into the fiber for an equivalent depletion of [Ca2+](SR) via SOCE, it remains unclear whether this is deleterious.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据