4.7 Article

Ion transporters in secretory and cyclically modulating ameloblasts: a new hypothesis for cellular control of preeruptive enamel maturation

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 299, 期 6, 页码 C1299-C1307

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00218.2010

关键词

rat incisor; enamel organ; immunohistochemistry; acid/base transport proteins

资金

  1. Danish National Research Foundation (Danmarks Grundforskningsfond)
  2. University of Aarhus Research Foundation [F-2007-FLS 1-67]

向作者/读者索取更多资源

Josephsen K, Takano Y, Frische S, Praetorius J, Nielsen S, Aoba T, Fejerskov O. Ion transporters in secretory and cyclically modulating ameloblasts: a new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol 299: C1299-C1307, 2010. First published September 15, 2010; doi:10.1152/ajpcell.00218.2010.-Mature enamel consists of densely packed and highly organized large hydroxyapatite crystals. The molecular machinery responsible for the formation of fully matured enamel is poorly described but appears to involve oscillative pH changes at the enamel surface. We conducted an immunohistochemical investigation of selected transporters and related proteins in the multilayered rat incisor enamel organ. Connexin 43 (Cx-43) is found in papillary cells and ameloblasts, whereas Na+-K+-ATPase is heavily expressed during maturation in the papillary cell layer only. Given the distribution of Cx-43 channels and Na+-K+-ATPase, we suggest that ameloblasts and the papillary cell layer act as a functional syncytium. During enamel maturation ameloblasts undergo repetitive cycles of modulation between ruffle-ended (RA) and smooth-ended (SA) ameloblast morphologies. Carbonic anhydrase II and vacuolar H+-ATPase are expressed simultaneously at the beginning of the maturation stage in RA cells. The proton pumps are present in the ruffled border of RA and appear to be internalized during the SA stage. Both papillary cells and ameloblasts express plasma membrane acid/base transporters (AE2, NBC, and NHE1). AE2 and NHE1 change position relative to the enamel surface as localization of the tight junctions changes during ameloblast modulation cycles. We suggest that the concerted action of the papillary cell layer and the modulating ameloblasts regulates the enamel microenvironment, resulting in oscillating pH fluctuations. The pH fluctuations at the enamel surface may be required to keep intercrystalline spaces open in the surface layers of the enamel, enabling degraded enamel matrix proteins to be removed while hydroxyapatite crystals grow as a result of influx of calcium and phosphate ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据