4.7 Article

Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 297, 期 6, 页码 C1509-C1519

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00240.2009

关键词

heat shock proteins; O-GlcNAc; O-glycosylation; heat shock factor-1; cell protection; cell survival; cell injury

资金

  1. National Institutes of Health National Institute of General Medical Sciences [RO1-GM-078312]

向作者/读者索取更多资源

Hamiel CR, Pinto S, Hau A, Wischmeyer PE. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol 297: C1509-C1519, 2009. First published September 23, 2009; doi:10.1152/ajpcell.00240.2009.-Glutamine (GLN) plays a key role in cellular protection following injury via enhancement of heat shock protein 70 (HSP70). The pathway by which GLN enhances HSP70 is unknown. GLN is a key substrate for the hexosamine biosynthetic pathway (HBP), which has been shown to induce HSP70. We sought to explore the role of the HBP in GLN-mediated HSP70 expression. Both chemical inhibitors and small interfering (si) RNA knockdown of key HBP enzymes were used in mouse embryonic fibroblast cells to determine the effects of the HBP on HSP70 expression. The O-glycosylation, nuclear translocation, and transcriptional activation of heat shock factor-1 (HSF-1) and Sp1 were evaluated using immunoprecipitation, Western blotting, and luciferase assays. HSP70 expression levels were evaluated via ELISA and Western blotting. GLN augmented HBP activity before and after heat stress (HS). Chemical inhibition of HBP enzymes reduced GLN-mediated HSP70 expression. Specific siRNA targeting of the key HBP enzyme UDP-N-acetylglucosamine (GlcNAc): polypeptide-O-beta-acetylglucosaminyltransferase (OGT) blocked GLN-mediated HSP70 expression and attenuated GLN-mediated cellular protection post-HS. Chemical and siRNA attenuation of the HBP blocked GLN-induced nuclear translocation of Sp1 and HSF-1, which are key to maximal HSP70 expression. Finally, immunoprecipitation revealed HSF-1 was O-glycosylated, and GLN enhanced this effect. These results suggest that metabolism of GLN via the HBP enhances HSP70 expression. This effect appears to be mediated via O-glycosylation, nuclear translocation, and transcriptional activation of Sp1 and HSF-1. This is an important mechanistic description of a pathway that appears responsible for GLN-mediated HSP70 expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据