4.7 Article

Secretory state regulates Zn2+ transport in gastric parietal cell of the rabbit

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 297, 期 4, 页码 C979-C989

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00577.2008

关键词

gastric gland; tubulovesicles; zinc; acidity regulation

资金

  1. National Institute of Diabetes and Digestive and Kidney Diseases [R01-DK-069929]
  2. Howard Hughes Medical Institute Student Fellowships

向作者/读者索取更多资源

Naik HB, Beshire M, Walsh BM, Liu J, Soybel DI. Secretory state regulates Zn2+ transport in gastric parietal cell of the rabbit. Am J Physiol Cell Physiol 297: C979-C989, 2009. First published August 12, 2009; doi:10.1152/ajpcell.00577.2008.-Secretory compartments of neurons, endocrine cells, and exocrine glands are acidic and contain high levels of labile Zn2+. Previously, we reported evidence that acidity is regulated, in part, by the content of Zn2+ in the secretory [i.e., tubulovesicle (TV)] compartment of the acid-secreting gastric parietal cell. Here we report studies focusing on the mechanisms of Zn2+ transport by the TV compartment in the mammalian (rabbit) gastric parietal cell. Uptake of Zn2+ by isolated TV structures was monitored with a novel application of the fluorescent Zn2+ reporter N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ). Uptake was suppressed by removal of external ATP or blockade of H+-K+-ATPase that mediates luminal acid secretion. Uptake was diminished with dissipation of the proton gradient across the TV membrane, suggesting Zn2+/H+ antiport as the connection between Zn2+ uptake and acidity in the TV lumen. In isolated gastric glands loaded with the reporter fluozin-3, inhibition of H+-K+-ATPase arrested the flow of Zn2+ from the cytoplasm to the TV compartment and secretory stimulation with forskolin enhanced vectorial movement of cytoplasmic Zn2+ into the tubulovesicle/lumen (TV/L) compartment. Our findings suggest that Zn2+ accumulation in the TV/L compartment is physiologically coupled to secretion of acid. These findings offer novel insight into mechanisms regulating Zn2+ homeostasis in the gastric parietal cell and potentially other cells in which acidic subcellular compartments serve signature functional roles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据