4.7 Article

Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 294, 期 1, 页码 C271-C279

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00297.2007

关键词

hypertrophy; vasoconstriction; vascular smooth muscle; endothelium; nitric oxide

向作者/读者索取更多资源

The role of caveolae in stretch-versus flow-induced vascular responses was investigated using caveolin 1-deficient [knockout ( KO)] mice. Portal veins were stretched longitudinally for 5 min (acute) or 72 h (organ culture). Basal ERK1/2 and Akt phosphorylation were increased in organ-cultured KO veins, as were protein synthesis and vessel wall cross sections. Stretch stimulated acute phosphorylation of ERK1/2 and long-term phosphorylation of focal adhesion kinase (FAK) and cofilin but did not affect Akt phosphorylation. Protein synthesis, and particularly synthesis of smooth muscle differentiation markers, was increased by stretch. These effects did not differ in portal veins from KO and control mice, which also showed the same contractile response to membrane depolarization and inhibition by the Rho kinase inhibitor Y-27632. KO carotid arteries had increased wall cross sections and responded to pressurization (120 mmHg) for 1 h with increased ERK1/2 but not Akt phosphorylation, similar to control arteries. Shear stress by flow for 15 min, on the other hand, increased phosphorylation of Akt in carotids from control but not KO mice. In conclusion, caveolin 1 contributes to low basal ERK1/2 and Akt activity and is required for Akt-dependent signals in response to shear stress (flow) but is not essential for trophic effects of stretch (pressure) in the vascular wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据