4.6 Article

Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2015.01.005

关键词

CO2 storage; Dry-out; Precipitation; Counter-current flow; Micro-CT imaging; Sandstone

向作者/读者索取更多资源

Drying and salt precipitation in geological formations can have serious consequences for upstream operations in terms of injectivity and productivity. Here we investigate the consequences of supercritical CO2 injection in sandstones. The reported findings are directly relevant for CO2 sequestration and acid gas injection operations, but might also be of interest to a broader community dealing with drying and capillary phenomena. By injecting dry supercritical CO2 into brine-saturated sandstone, we investigate the drying process and the associated precipitation of salts in a capillary-pressure-dominated flow regime. Precipitation patterns were recorded during the drying process by means of mu CT scanning. The experimental results and numerical simulations show that under a critical flow rate salt precipitates with an inhomogeneous spatial distribution because of brine and solutes being transported in counter-current flow upstream where salt eventually precipitates. A substantial impairment of the absolute permeability has been found, but despite high local salt accumulation, the effective CO2 permeability increased during all experiments. This phenomenon is a result of the observed microscopic precipitation pattern and eventually the resulting K(phi) relationship. The findings in this paper are related to unimodal sandstone. In a companion paper (Ott et al., 2014) we present data on the distinctly different consequences of salt precipitation in dual- or multi-porosity rocks. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据