4.5 Article

Tractable approximate robust geometric programming

期刊

OPTIMIZATION AND ENGINEERING
卷 9, 期 2, 页码 95-118

出版社

SPRINGER
DOI: 10.1007/s11081-007-9025-z

关键词

geometric programming; linear programming; piecewise-linear function; robust geometric programming; robust linear programming; robust optimization

向作者/读者索取更多资源

The optimal solution of a geometric program (GP) can be sensitive to variations in the problem data. Robust geometric programming can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a GP and optimizing for the worst-case scenario under this model. However, it is not known whether a general robust GP can be reformulated as a tractable optimization problem that interior-point or other algorithms can efficiently solve. In this paper we propose an approximation method that seeks a compromise between solution accuracy and computational efficiency. The method is based on approximating the robust GP as a robust linear program (LP), by replacing each nonlinear constraint function with a piecewise-linear (PWL) convex approximation. With a polyhedral or ellipsoidal description of the uncertain data, the resulting robust LP can be formulated as a standard convex optimization problem that interior-point methods can solve. The drawback of this basic method is that the number of terms in the PWL approximations required to obtain an acceptable approximation error can be very large. To overcome the curse of dimensionality that arises in directly approximating the nonlinear constraint functions in the original robust GP, we form a conservative approximation of the original robust GP, which contains only bivariate constraint functions. We show how to find globally optimal PWL approximations of these bivariate constraint functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据