4.4 Article

Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection

期刊

TRANSPORT IN POROUS MEDIA
卷 73, 期 2, 页码 141-159

出版社

SPRINGER
DOI: 10.1007/s11242-007-9165-9

关键词

CO2 sequestration; enhanced coalbed methane recovery; multicomponent sorption; hysteresis; displacement experiments; numerical simulation

向作者/读者索取更多资源

Methane/carbon dioxide/nitrogen flow and adsorption behavior within coal is investigated simultaneously from a laboratory and simulation perspective. The samples are from a coalbed in the Powder River Basin, WY. They are characterized by methane, carbon dioxide, and nitrogen sorption isotherms, as well as porosity and permeability measurements. This coal adsorbs almost three times as much carbon dioxide as methane and exhibits significant hysteresis among pure-component adsorption and desorption isotherms that are characterized as Langmuir-like. Displacement experiments were conducted with pure nitrogen, pure carbon dioxide, and various mixtures. Recovery factors are greater than 94% of the OGIP. Most interestingly, the coal exhibited ability to separate nitrogen from carbon dioxide due to the preferential strong adsorption of carbon dioxide. Injection of a mixture rich in carbon dioxide gives slower initial recovery, increases breakthrough time, and decreases the volume of gas needed to sweep out the coalbed. Injection gas rich in nitrogen leads to relatively fast recovery of methane, earlier breakthrough, and a significant fraction of nitrogen in the produced gas at short times. A one-dimensional, two-phase (gas and solid) model was employed to rationalize and explain the experimental data and trends. Reproduction of binary behavior is characterized as excellent, whereas the dynamics of ternary systems are predicted with less accuracy. For these coals, the most sensitive simulation input were the multicomponent adsorption-desorption isotherms, including scanning loops. Additionally, the coal exhibited a two-porosity matrix that was incorporated numerically.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据