4.5 Article

Improved serpentine laminating micromixer with enhanced local advection

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 4, 期 6, 页码 513-523

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-007-0208-x

关键词

micromixer; chaotic advection; lamination

向作者/读者索取更多资源

It is a complicated task to achieve high level of mixing inside a microchannel because the flow is characterized by low Reynolds number (Re). Recently, the serpentine laminating micromixer (SLM) was reported to achieve efficient chaotic mixing by introducing F-shape mixing units successively in two layers such that two mixing mechanisms, namely splitting/recombination and chaotic advection, enhance the mixing performance in combination. The present paper proposes an improved serpentine laminating micromixer (ISLM) with a novel redesign of the F-shape mixing unit: reduced cross-sectional area at the recombination region locally enhances advection effect which helps better vertical lamination, resulting in improved mixing performance. Flow characteristics and mixing performances of SLM and ISLM are investigated numerically and verified experimentally. Numerical analysis system is developed based on a finite element method and a colored particle tracking method, while mixing entropy is adopted as a mixing measure. Numerical analysis result confirms enhanced vertical lamination performance and consequently improved mixing performance of ISLM. SLM and ISLM were fabricated by polydimethylsiloxane (PDMS) casting against SU-8 patterned masters. Mixing performance is observed by normalized purple color intensity change of phenolphthalein along the downchannel. Flow characteristics of SLM and ISLM are investigated by tracing the purple interface of two streams via optical micrograph. The normalized mixing intensity behavior confirms improved mixing performance of ISLM, which is consistent with numerical analysis result.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据