4.6 Article

The Early Growth Response Gene Egr2 (Alias Krox20) Is a Novel Transcriptional Target of Transforming Growth Factor-β that Is Up-Regulated in Systemic Sclerosis and Mediates Profibrotic Responses

期刊

AMERICAN JOURNAL OF PATHOLOGY
卷 178, 期 5, 页码 2077-2090

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ajpath.2011.01.035

关键词

-

资金

  1. Department of Defense [W81-XWH-06-01-0278]
  2. NIH [AR-04239]

向作者/读者索取更多资源

Although the early growth response-2 (Egr-2, alias Krox20) protein shows structural and functional similarities to Egr-1, these two related early-immediate transcription factors are nonredundant. Egr-2 plays essential roles in peripheral nerve myelination, adipogenesis, and immune tolerance; however, its regulation and role in tissue repair and fibrosis remain poorly understood. We show herein that transforming growth factor (TGF)-beta induced a Smad3-dependent sustained stimulation of Egr2 gene expression in normal fibroblasts. Overexpression of Egr-2 was sufficient to stimulate collagen gene expression and myofibroblast differentiation, whereas these profibrotic TGF-beta responses were attenuated in Egr-2- depleted fibroblasts. Genomewide transcriptional profiling revealed that multiple genes associated with tissue remodeling and wound healing were up-regulated by Egr-2, but the Egr-2 regulated gene expression profile overlapped only partially with the Egr-1-regulated gene profile. Levels of Egr-2 were elevated in lesional tissue from mice with bleomycin-induced scleroderma. Moreover, elevated Egr-2 was noted in biopsy specimens of skin and lung from patients with systemic sclerosis. These results provide the first evidence that Egr-2 is a functionally distinct transcription factor that is both necessary and sufficient for TGF-beta induced profibrotic responses and is aberrantly expressed in lesional tissue in systemic sclerosis and in a murine model of scleroderma. Together, these findings suggest that Egr-2 plays an important nonredundant role in the pathogenesis of fibrosis. Targeting Egr-2 might represent a novel therapeutic strategy to control fibrosis. (Am J Pathol 2011, 178:2077-2090; DOI: 10.1016/j.ajpath.2011.01.035)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据