4.5 Article Proceedings Paper

Selective laser sintering of porous tissue engineering scaffolds from poly(L)/carbonated hydroxyapatite nanocomposite microspheres

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-007-3089-3

关键词

-

向作者/读者索取更多资源

This study focuses on the use of bio-nanocomposite microspheres, consisting of carbonated hydroxyapatite (CHAp) nanospheres within a poly(L-lactide) (PLLA) matrix, to produce tissue engineering (TE) scaffolds using a modified selective laser sintering (SLS) machine. PLLA microspheres and PLLA/CHAp nanocomposite microspheres were prepared by emulsion techniques. The resultant microspheres had a size range of 5-30 mu m, suitable for the SLS process. Microstructural analyses revealed that the CHAp nanospheres were embedded throughout the PLLA microsphere, forming a nanocomposite structure. A custom-made miniature sintering platform was installed in a commercial Sinterstation (R) 2000 SLS machine. This platform allowed the use of small quantities of biomaterials for TE scaffold production. The effects of laser power; scan spacing and part bed temperature were investigated and optimized. Finally, porous scaffolds were successfully fabricated from the PLLA microspheres and PLLA/CHAp nanocomposite microspheres. In particular, the PLLA/CHAp nanocomposite microspheres appeared to be promising for porous bone TE scaffold production using the SLS technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据