4.4 Review

Greenhouse gas balance for composting operations

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 37, 期 4, 页码 1396-1410

出版社

WILEY
DOI: 10.2134/jeq2007.0453

关键词

-

向作者/读者索取更多资源

The greenhouse gas (GHG) impact of composting a range of potential feedstocks was evaluated through a review of the existing literature with a focus on methane (CH4) avoidance by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid waste and biosolids) or lagooned (animal manures). Methane generation potential is given based on total volatile solids, expected volatile solids destruction, and CH4 generation from lab and field incubations. For example, a facility that composts an equal mixture of manure, newsprint, and food waste could conserve the equivalent of 3.1 Mg CO2 per 1 dry Mg of feedstocks composted. if feedstocks were diverted from anaerobic storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG emissions from the use of electricity and fossil fuels and through GHG emissions during composting. Greenhouse gas emissions during composting are highest for high-nitrogen materials with high moisture contents. These debits are minimal in comparison to avoidance credits and can be further minimized through the use of higher carbon:nitrogen feedstock mixtures and lower-moisture-content mixtures. Compost end use has the potential to generate carbon credits through avoidance and sequestration of carbon; however, these are highly project specific and need to be quantified on an individual project basis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据