3.8 Article Proceedings Paper

Thermodynamic modeling of vapor-liquid equilibrium of binary systems ionic liquid plus supercritical {CO2 or CHF3} and ionic liquid plus hydrocarbons using Peng-Robinson equation of state

出版社

CHINESE INST CHEMICAL ENGINEER
DOI: 10.1016/j.jcice.2008.02.007

关键词

vapor-liquid equilibrium; equation of state; ionic liquids

向作者/读者索取更多资源

Vapor-liquid equilibrium (VLE) data from literature for binary systems involving several ionic liquids were correlated. The Peng-Robinson equation of state, coupled with the van der Waals and Wong-Sandler mixing rules, was used as the thermodynamic model to evaluate the fugacity coefficients. The UNIQUAC and NRTL models were used to calculate the excess Gibbs free energy in the Wong-Sandler mixing rule. A molecular modeling strategy using the software ChemOffice was used to calculate the volume and surface area parameters of ionic liquids for UNIQUAC, while the binary interaction energy parameters for UNIQUAC and NRTL models, as well as the binary interaction parameter of the van der Waals and Wong-Sandler mixing rules were estimated through a method based on the genetic algorithm. The results show that, as expected, the Wong-Sandler mixing rules represented better the data, with both activity coefficient models showing high accuracy. However, in one case, NRTL predicted an erroneous azeotropic condition, while UNIQUAC was able to correlate the data without this error. (c) 2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据