4.5 Article

Ureter obstruction alters expression of renal acid-base transport proteins in rat kidney

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 295, 期 2, 页码 F497-F506

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00425.2007

关键词

ureteral obstruction; HCO3- reabsorption; urinary acidification defect

向作者/读者索取更多资源

Urinary tract obstruction impairs renal function and is often associated with a urinary acidification defect caused by diminished net H+ secretion and/or HCO3- reabsorption. To identify the molecular mechanisms of these defects, protein expression of key acid-base transporters were examined along the renal nephron and collecting duct of kidneys from rats subjected to 24-h bilateral ureteral obstruction (BUO), 4 days after release of BUO (BUO-R), or BUO-R rats with experimentally induced metabolic acidosis (BUO-A). Semiquantitative immunoblotting revealed that BUO caused a significant reduction in the expression of the type 3 Na+/H+ exchanger (NHE3) in the cortex (21 +/- 4%), electrogenic Na+/HCO3- cotransporter (NBC1; 71 +/- 5%), type 1 bumetanide-sensitive Na(+)K(+)2Cl(-) cotransporter (NKCC2; 3 +/- 1%), electroneutral Na+/HCO3- cotransporter (NBCn1; 46 +/- 7%), and anion exchanger (pendrin; 87 +/- 2%). The expression of H+ ATPase increased in the inner medullary collecting duct (152 +/- 13%). These changes were confirmed by immunocytochemistry. In BUO-R rats, there was a persistent downregulation of all the acid-base transporters including H+ ATPase. Two days of NH4Cl loading reduced plasma pH and HCO3- levels in BUO-A rats. The results demonstrate that the expression of multiple renal acid-base transporters are markedly altered in response to BUO, which may be responsible for development of metabolic acidosis and contribute to the urinary acidification defect after release of the obstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据