4.6 Review

Mechanotransduction from the ECM to the genome: Are the pieces now in place?

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 104, 期 6, 页码 1964-1987

出版社

WILEY
DOI: 10.1002/jcb.21364

关键词

mechanotransduction; cell nucleus; chromatin

向作者/读者索取更多资源

A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal prestressed structure and its hardwired interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据