3.8 Article

Experimental determination of yield loci for magnesium alloy AZ31 under biaxial tensile stress conditions at elevated temperatures

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11740-008-0098-0

关键词

Computer aided engineering; Material characterization; Yield locus diagram

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

The finite element analysis (FEA) has become one of the most relevant and most important tools in fields of sheet metal forming for designing processes and dimensioning parts. However, reliability and quality of the numerical results strongly depend on the whole FE-model and especially on the modeling of the material behavior, which shows wide impact on calculated stresses and strains of sheet metal parts. Therefore, the experimental determination of characteristic material data concerning anisotropic and temperature-effects is essential. In this paper the influence of temperature on the yielding and the hardening behavior of the magnesium sheet metal alloy AZ31 are investigated for different uniaxial and biaxial stress conditions. For that purpose an experimental setup has been developed at the Chair of Manufacturing Technology (LFT) which enables biaxial tensile testing of sheet metal. Yield loci of AZ31 are determined as a function of temperature and they are based on solely measurement data of the forming process itself.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据