4.8 Article

Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 22, 页码 11908-11920

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b01685

关键词

MTX-PEG; magnetic resonance imaging; drug delivery; self-targeted cancer therapy

资金

  1. National Natural Science Foundation of China [31271071, 81000660]
  2. Fujian Province Medical Innovation Project [2014-CXB-350]
  3. Army Logistics Scientific Research Project [CNJ14C007]
  4. Natural Science Foundation of Fujian Province of China [2013J01384]

向作者/读者索取更多资源

Multifunctional nanocomposites hold great potential to integrate therapeutic and diagnostic functions into a single nanoscale structure. In this paper, we prepared the MTX-PEG-CS-IONPs-Cy5.5 nanocomposites by functionalizing the surface of chitosan-decorated iron oxide nanoparticles (CS-IONPs) with polyethylene glycolated methotraxate (MTX-PEG) and near-infrared fluorescent cyanin dye (Cy5.5). A clinically useful PEGylated anticancer prodrug, MTX-PEG, was also developed as a tumor cell-specific targeting ligand for self-targeted cancer treatment. In such nanocomposites, the advantage was that the orthogonally functionalized, self-targeted MTX-PEG-CS-IONPs-Cy5.5 can synergistically combine an early phase selective tumor-targeting efficacy with a late-phase cancer-killing effect, which was also confirmed by dual model (magnetic resonance and fluorescence) imaging. Furthermore, with the aids of the folate (FA) receptor-mediated endocytosis (able to turn cellular uptake off in normal cells and on in cancer cells) and pH/intracellular protease-mediated hydrolyzing peptide bonds (able to turn drug release off in systemic circulation and on inside endo/lysosomes), the MTX-PEG-CS-IONPs-Cy5.5 could deliver MTX to FA receptors-overexpressed cancer cells, showing the improved anticancer activity with the reduced side effects. Together, the MTX-PEG-CS-IONPs-Cy5.5 could act as a highly convergent, flexible, and simplified system for dual model imaging and synergistically self-targeted cancer therapy, holding great promise for versatile biomedical applications in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据