4.4 Article

Mineralogy and mineral chemistry of detrital heavy minerals from the Rhine River in Germany as evidence to their provenance, sedimentary and depositional history: focus on platinum-group minerals and remarks on cassiterite, columbite-group minerals and uraninite

期刊

INTERNATIONAL JOURNAL OF EARTH SCIENCES
卷 105, 期 2, 页码 637-657

出版社

SPRINGER
DOI: 10.1007/s00531-015-1181-3

关键词

Rhine River; Gold; Platinum-group minerals (PGM); Cassiterite; Tapiolite; Uraninite; Mineralogy; Mineral chemistry; U-Pb dating

向作者/读者索取更多资源

In the course of studying the gold-bearing heavy mineral spectrum of sediments from the upper Rhine River, a distinct suite of detrital grains comprising platinum-group minerals (PGM), cassiterite, columbite-group minerals and uraninite was identified and investigated using conventional and modern analytical methods. This study aimed to characterize the selected mineral groups mineralogically and geochemically in order to identify possible source areas and to reconstruct different aspects of the complex sedimentary history of the Rhine River sediments. The PGM assemblage is dominated by grains of Ru-Os-Ir alloys (70 %), followed by Pt-Fe alloys, sperrylite and rare other PGM. Accordingly, this PGM assemblage represents highly mature, physically and chemically extremely resistant compounds which may have experienced and survived repeated reworking during their sedimentary history. Pt-Fe alloys and sperrylite may originate from various sources; however, the predominant Ru-Os-Ir alloy grains point to an origin from ophiolite sequences of unknown age (but likely pre-Alpine; Variscan or older). The exact locations of the primary sources and the complex, prolonged sedimentary history of the detrital PGM with possibly multiple intermittent storages remain unknown. Detrital cassiterite grains were dated by the U-Pb method using LA-ICP-MS. The age dates of cassiterite largely overlap with zircon age distributions by peaking distinctly at ca. 325 Ma (majority of ages), thereby implying a predominantly Variscan age of the cassiterite grains and possible derivation from mineralization in the Black Forest area. Columbite-group minerals are dominantly tapiolite originating from pegmatites. Rare uraninite grains attest that this mineral experienced rapid erosion, transport and deposition in a reducing environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据