4.7 Article

Metabolic Phenotyping for Enhanced Mechanistic Stratification of Chronic Hepatitis C-Induced Liver Fibrosis

期刊

AMERICAN JOURNAL OF GASTROENTEROLOGY
卷 110, 期 1, 页码 159-169

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1038/ajg.2014.370

关键词

-

资金

  1. Pfizer
  2. National Institute for Health Research (NIHR) Biomedical Research Unit based at Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
  3. MRC Integrative Toxicology Training Partnership (ITTP)
  4. National Institute for Health Research [NF-SI-0512-10124] Funding Source: researchfish

向作者/读者索取更多资源

OBJECTIVES: The invasive nature of biopsy alongside issues with categorical staging and sampling error has driven research into noninvasive biomarkers for the assessment of liver fibrosis in order to stratify and personalize treatment of patients with liver disease. Here, we sought to determine whether a metabonomic approach could be used to identify signatures reflective of the dynamic, pathological metabolic perturbations associated with fibrosis in chronic hepatitis C (CHC) patients. METHODS: Plasma nuclear magnetic resonance (NMR) spectral profiles were generated for two independent cohorts of CHC patients and healthy controls (n = 50 original and n = 63 validation). Spectral data were analyzed and significant discriminant biomarkers associated with fibrosis (as graded by enhanced liver fibrosis (ELF) and METAVIR scores) identified using orthogonal projection to latent structures (O-PLS). RESULTS: Increased severity of fibrosis was associated with higher tyrosine, phenylalanine, methionine, citrate and, very-low-density lipoprotein (vLDL) and lower creatine, low-density lipoprotein (LDL), phosphatidylcholine, and N-Acetyl-alpha 1-acid-glycoprotein. Although area under the receiver operator characteristic curve analysis revealed a high predictive performance for classification based on METAVIR-derived models, <40% of identified biomarkers were validated in the second cohort. In the ELF-derived models, however, over 80% of the biomarkers were validated. CONCLUSIONS: Our findings suggest that modeling against a continuous ELF-derived score of fibrosis provides a more robust assessment of the metabolic changes associated with fibrosis than modeling against the categorical METAVIR score. Plasma metabolic phenotypes reflective of CHC-induced fibrosis primarily define alterations in amino-acid and lipid metabolism, and hence identify mechanistically relevant pathways for further investigation as therapeutic targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据