3.8 Proceedings Paper

Monte Carlo Simulation of X-Ray Imaging Using a Graphics Processing Unit

出版社

IEEE
DOI: 10.1109/NSSMIC.2009.5402382

关键词

-

向作者/读者索取更多资源

A code for Monte Carlo simulations of radiation transport using a Graphics Processing Unit (GPU) is introduced. The code has been developed using the CUDA (TM) programming model, an extension to the C language that allows the execution of general purpose computations on the new generation of GPUs from NVIDIA. The accurate Compton and Rayleigh interaction models and interaction mean free paths from the PENELOPE package, and a generic voxelized geometry model, have been implemented in the new code. The secondary particles generated by Compton, photoelectric and pair-production events are not transported. An ideal x-ray detector and a cone beam source can be defined to reproduce an imaging system and facilitate the simulations of medical imaging applications. A 24-fold speed up factor with the GPU compared to the CPU is reported for a radiographic projection of a detailed anthropomorphic female phantom. A description of the simulation algorithm and the technical implementation in the GPU are provided. This work shows that GPUs are already a good alternative to CPUs for Monte Carlo simulation of x-ray transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据