3.8 Proceedings Paper

Entanglement in systems of indistinguishable fermions

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/171/1/012032

关键词

-

向作者/读者索取更多资源

The characterization of entanglement is a fundamental issue for Quantum Information Theory. But the definition of entanglement depends on the notion of locality, and thus on the tensor product structure of the state space of the composite system. This notion is affected by the presence of superselection rules that restrict the accessible Hilbert space to a direct sum of subspaces. Indistinguishability of particles imposes one such restriction, namely to totally symmetric or totally antisymmetric states. The entanglement can in this case be defined with respect to partitions of modes in the second quantization formalism. For fermionic systems the Fock space of m modes is isomorphic to the space of m qubits, but the action of creation and annihilation operators is not local, due to their anticommutation. Conservation of the parity of fermion number imposes another relevant superselection rule. It requires that local physical observables commute with the local parity operator. Taking into account the considerations above, it is possible to define the set of separable states or equivalently the concept of entanglement for fermionic systems in a number of ways. Here we analyze systematically these possibilities and the relation among the various sets of separable states. We also discuss the behavior of the different classes when taking several copies of the state, as well as the characterization of the sets in terms of the usual criteria regarding the tensor product.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据