4.5 Article

NODE-SPECIFIC BRANCHING AND HETEROCHRONIC CHANGES UNDERLIE POPULATION-LEVEL DIFFERENCES IN MIMULUS GUTTATUS (PHRYMACEAE) SHOOT ARCHITECTURE

期刊

AMERICAN JOURNAL OF BOTANY
卷 98, 期 12, 页码 1924-1934

出版社

WILEY
DOI: 10.3732/ajb.1100098

关键词

axillary meristem; branching; development; evolution; heterochrony; life history evolution; meristem limitation; Mimulus; shoot architecture

资金

  1. Department of Ecology and Evolutionary Biology
  2. Natural History Museum at the University of Colorado, Boulder

向作者/读者索取更多资源

Premise of the study: Shoot architecture is a fundamentally developmental aspect of plant biology with implications for plant form, function, reproduction, and life history evolution. Mimulus guttatus is morphologically diverse and becoming a model for evolutionary biology. Shoot architecture, however, has never been studied from a developmental perspective in M. guttatus. Methods: We examined the development of branches and flowers in plants from two locally adapted populations of M. guttatus with contrasting flowering times, life histories, and branch numbers. We planted second-generation seed in growth chambers to control for maternal and environmental effects. Key results: Most branches occurred at nodes one and two of the main axis. Onset of branching occurred earlier and at a greater frequency in perennials than in annuals. In perennials, almost all flowers occurred at the fifth or more distal nodes. In annuals, most flowers occurred at the third and more distal nodes. Accessory axillary meristems and higher-order branching did not influence shoot architecture. Conclusions: We found no evidence for trade-offs between flowers and branches because axillary meristem number was not limiting: a large number of meristems remained quiescent. If, however, quiescence is a component of meristem allocation strategy, then meristems may be limited despite presence of quiescent meristems. At the two basalmost nodes, branch number was determined by mechanisms governing either meristem initiation or outgrowth, rather than flowering vs. branching. At the third and more distal nodes, heterochronic processes contributed to flowering time and branch number differences between populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据