4.6 Article

Complexity and predictability of the monthly Western Mediterranean Oscillation index

期刊

INTERNATIONAL JOURNAL OF CLIMATOLOGY
卷 36, 期 6, 页码 2435-2450

出版社

WILEY
DOI: 10.1002/joc.4503

关键词

Western Mediterranean Oscillation index; reconstruction theorem; complexity and predictive instability; multifractal spectrum; fractional Gaussian noise simulation; autoregressive process

向作者/读者索取更多资源

The complexity, predictability and predictive instability of the Western Mediterranean Oscillation index (WeMOi) at monthly scale, years 1856-2000, are analysed from the viewpoint of monofractal and multifractal theories. The complex physical mechanism is quantified by: (1) the Hurst exponent, H, of the rescaled range analysis; (2) correlation and embedding dimensions, mu* and d(E), together with Kolmogorov entropy, kappa, derived from the reconstruction theorem; and (3) the critical Holder exponent, alpha(o), the spectral width, W, and the asymmetry of the multifractal spectrum, f(alpha). The predictive instability is described by the Lyapunov exponents, lambda, and the Kaplan-Yorke dimension, D-KY, while the self-affine character is characterized by the Hausdorff exponent, H-a. Relationships between the exponent beta, which describes the dependence of the power spectrum S(f) on frequency f, and the Hurst and Hausdorff exponents suggest fractional Gaussian noise (fGn) as a right simulation of empiric WeMOi. Comparisons are made with monthly North-Atlantic Oscillation and Atlantic Multidecadal Oscillation indices. The analysis is complemented with an ARIMA(p,1,0) autoregressive process, which yields a more accurate prediction of WeMOi than that derived from fGn simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据