4.6 Article

Breakdown of the rotating-wave approximation in the description of entanglement of spin-anticorrelated states

期刊

PHYSICAL REVIEW A
卷 79, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.79.044305

关键词

Bell theorem; excited states; quantum computing; quantum entanglement; two-photon processes

资金

  1. National Natural Science Foundation of China [10804069]
  2. Shanghai Education Foundation for Young Teachers
  3. Shanghai Research Foundation [07dz22020]
  4. Australian Research Council

向作者/读者索取更多资源

It is well established that an entanglement encoded in the Bell states of a two-qubit system with correlated spins exhibits completely different evolution properties from that encoded in states with the anticorrelated spins. A complete and abrupt loss of the entanglement, called the entanglement sudden death, can be found to occur for the spin-correlated states, but the entanglement evolves without any discontinuity or decays asymptotically for the spin-anticorrelated states. We consider the evolution of an initial entanglement encoded in the spin-anticorrelated states and demonstrate that the asymptotic behavior predicted before occurs only in the weak-coupling limit or equivalently when the rotating-wave approximation (RWA) is made on the interaction Hamiltonian of the qubits with the field. If we do not restrict ourselves to the RWA, we find that the entanglement undergoes a discontinuity, the sudden-death phenomenon. We illustrate this behavior by employing an efficient scheme for entanglement evolution between two cold-trapped atoms located inside a single-mode cavity. Although only a single excitation is initially present in the system, we find that the two-photon excited state, which plays the key role for the discontinuity in the behavior of the entanglement, gains a population over a short time of the evolution. When the RWA is made on the interaction, the two-photon excited state remains unpopulated for all times and the discontinuity is absent. We attribute this phenomenon to the principle of complementarity between the evolution time and energy, and the presence of the counter-rotating terms in the interaction Hamiltonian.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据