4.6 Article

Time-dependent R-matrix theory for ultrafast atomic processes

期刊

PHYSICAL REVIEW A
卷 79, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.79.053411

关键词

ab initio calculations; atom-photon collisions; high-speed optical techniques; laser beam effects; neon; photoionisation; two-photon processes; wave functions

资金

  1. Engineering and Physical Sciences Research Council [EP/E000223/1]
  2. EPSRC [EP/E000223/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/E000223/1] Funding Source: researchfish

向作者/读者索取更多资源

We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which propagate the atomic wave function in the presence of the laser field forward in time in the internal and external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet method and an alternative time-dependent method. We also verify the capability of the current approach by applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据