4.6 Article

Local temperature in quantum thermal states

期刊

PHYSICAL REVIEW A
卷 79, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.79.052340

关键词

Hilbert spaces; Ising model; phase transformations; spin Hamiltonians; thermodynamics

资金

  1. EU
  2. Spanish MEC [FIS2007-60182]
  3. Juan de la Cierva
  4. Grup Consolidat de Recerca de la Generalitat de Catalunya
  5. Caixa Manresa
  6. ICREA Funding Source: Custom

向作者/读者索取更多资源

We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据