4.4 Article Proceedings Paper

Evaporation of pure liquids with increased viscosity in a falling film evaporator

期刊

HEAT AND MASS TRANSFER
卷 45, 期 7, 页码 1037-1046

出版社

SPRINGER
DOI: 10.1007/s00231-007-0317-9

关键词

-

向作者/读者索取更多资源

The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from mu = 0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据