4.6 Article

Magnetometry via a double-pass continuous quantum measurement of atomic spin

期刊

PHYSICAL REVIEW A
卷 79, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.79.062107

关键词

atom-photon collisions; indeterminancy; Kalman filters; magnetometers; parameter estimation; particle filtering (numerical methods); stochastic processes

向作者/读者索取更多资源

We argue that it is possible in principle to reduce the uncertainty of an atomic magnetometer by double passing a far-detuned laser field through the atomic sample as it undergoes Larmor precession. Numerical simulations of the quantum Fisher information suggest that, despite the lack of explicit multibody coupling terms in the system's magnetic Hamiltonian, the parameter estimation uncertainty in such a physical setup scales better than the conventional Heisenberg uncertainty limit over a specified but arbitrary range of particle number. Using the methods of quantum stochastic calculus and filtering theory, we demonstrate numerically an explicit parameter estimator (called a quantum particle filter) whose observed scaling follows that of our calculated quantum Fisher information. Moreover, the quantum particle filter quantitatively surpasses the uncertainty limit calculated from the quantum Crameacuter-Rao inequality based on a magnetic coupling Hamiltonian with only single-body operators. We also show that a quantum Kalman filter is insufficient to obtain super-Heisenberg scaling and present evidence that such scaling necessitates going beyond the manifold of Gaussian atomic states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据