4.0 Article

An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes

期刊

ALGORITHMS FOR MOLECULAR BIOLOGY
卷 8, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1748-7188-8-15

关键词

-

资金

  1. Universiti Teknologi Malaysia
  2. GUP Research Grant [Q.J130000.7107.01H29]

向作者/读者索取更多资源

Background: Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes from the data for cancer classification. Many computational methods face difficulties in selecting small subsets due to the small number of samples compared to the huge number of genes (high-dimension), irrelevant genes, and noisy genes. Methods: We propose an enhanced binary particle swarm optimization to perform the selection of small subsets of informative genes which is significant for cancer classification. Particle speed, rule, and modified sigmoid function are introduced in this proposed method to increase the probability of the bits in a particle's position to be zero. The method was empirically applied to a suite of ten well-known benchmark gene expression data sets. Results: The performance of the proposed method proved to be superior to other previous related works, including the conventional version of binary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also requires lower computational time compared to BPSO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据