4.3 Article

The 1-Fixed-Endpoint Path Cover Problem is Polynomial on Interval Graphs

期刊

ALGORITHMICA
卷 58, 期 3, 页码 679-710

出版社

SPRINGER
DOI: 10.1007/s00453-009-9292-5

关键词

Perfect graphs; Interval graphs; Path cover; Fixed-endpoint path cover; Linear-time algorithms

向作者/读者索取更多资源

We consider a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short, on interval graphs. Given a graph G and a subset T of k vertices of V (G), a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of T are all endpoints of the paths in P. The kPC problem is to find a k-fixed-endpoint path cover of G of minimum cardinality; note that, if T is empty the stated problem coincides with the classical path cover problem. In this paper, we study the 1-fixed-endpoint path cover problem on interval graphs, or 1PC for short, generalizing the 1HP problem which has been proved to be NP-complete even for small classes of graphs. Motivated by a work of Damaschke (Discrete Math. 112: 4964, 1993), where he left both 1HP and 2HP problems open for the class of interval graphs, we show that the 1PC problem can be solved in polynomial time on the class of interval graphs. We propose a polynomial-time algorithm for the problem, which also enables us to solve the 1HP problem on interval graphs within the same time and space complexity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据