4.7 Article

Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2014.08.043

关键词

IPN hydrogel fiber; Enzymatic crosslinking; Mechanical strength

资金

  1. National Natural Science Foundation of China [51073036, 51373034]

向作者/读者索取更多资源

In this report, biological macromolecular full IPN hydrogel fibers composed of gelatin and alginate with an interpenetrating network (IPN) structure were prepared by wet spinning using a combination of enzymatic and calcium ions crosslinking. In the full IPN hydrogel fibers, mTG catalyzed the formation of one network of gelatin while calcium ions crosslinked another network of alginate intertwining with the former. The mechanical strength of the full IPN hydrogel fibers was measured by an electronic single fiber strength tester. The results showed that gelatin-alginate full IPN hydrogel fibers had a significant improvement of mechanical strength over gelatin-alginate semi-IPN gel fibers crosslinked only by calcium ions. The full IPN fiber has the highest tension of 62 cN and elongation of 739%, which are much higher than those of alginate hydrogel. Furthermore, biological evaluation indicated that gelatin-alginate full IPN hydrogel fibers enhance cell adhesion and proliferation significantly, illustrating the cyto-compatibility. A preliminary trial of hand weaving showed the knittablity of the mechanically tough full IPN hydrogel fibers. Because of their both excellent biocompatibility and mechanical strength, the biological macromolecular hydrogel fibers with full IPN structure may be desirable candidates for engineering tissue scaffolds. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据