4.6 Article

Repulsive Fermi gas in a harmonic trap: Ferromagnetism and spin textures

期刊

PHYSICAL REVIEW A
卷 80, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.013607

关键词

-

资金

  1. NSERC of Canada
  2. Canadian Institute for Advanced Research
  3. Sloan Foundation
  4. Connaught Foundation
  5. Ontario ERA

向作者/读者索取更多资源

We study ferromagnetism in a repulsively interacting two-component Fermi gas in a harmonic trap. Within a local density approximation, the two components phase separate beyond a critical interaction strength, with one species having a higher density at the trap center. We discuss several easily observable experimental signatures of this transition. The mean-field release energy, its separate kinetic and interaction contributions, as well as the potential energy all depend on the interaction strength and contain a sharp signature of this transition. In addition, the conversion rate of atoms to molecules, arising from three-body collisions, peaks at an interaction strength just beyond the ferromagnetic transition point. We then go beyond the local density approximation and derive an energy functional that includes a term that depends on the local magnetization gradient and acts as a surface tension. Using this energy functional, we numerically study the energetics of some candidate spin textures that may be stabilized in a harmonic trapping potential at zero net magnetization. We find that a hedgehog state has a lower energy than an in-out domain-wall state in an isotropic trap. Upon inclusion of trap anisotropy we find that the hedgehog magnetization profile gets distorted due to the surface tension term, this distortion being more apparent for small atom numbers. We estimate that the magnetic dipole interaction does not play a significant role in this system. We consider possible implications for experiments on trapped Li-6 and K-40 gases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据