4.6 Article

Effect of Surface Modifying Macromolecules Stoichiometric Ratio on Composite Hydrophobic/Hydrophilic Membranes Characteristics and Performance in Direct Contact Membrane Distillation

期刊

AICHE JOURNAL
卷 55, 期 12, 页码 3145-3151

出版社

WILEY
DOI: 10.1002/aic.11957

关键词

direct contact membrane distillation; desalination; hydro-phobic/-philic composite membranes; surface modifying macromolecules; polyetherimide

资金

  1. Middle East Desalination Research Center (MEDRC)
  2. Natural Sciences and Engineering Research Council of Canada
  3. Ministry of the Environment, ON, Canada
  4. Spanish Ministry of Science and Education [FIS2006-05323]

向作者/读者索取更多资源

The stoichiometric ratio for the synthesis components of hydrophobic new surface modifying macromolecules (nSMM) was altered systematically to produce three different types of nSMMs, which are called hereafter nSMM1, nSMM2, and nSMM3. The newly synthesized SMMs were characterized for fluorine content, average molecular weight, and glass transition temperature. The results showed that fluorine content decreased with increasing the ratio of alpha,omega-aminopropyl poly(dimethyl siloxane) to 4,4'-methylene bis(phenyl isocyanate). The synthesized nSMMs were blended into hydrophilic polyetherimide (PEI) host polymer to form porous hydrophobic/hydrophilic composite membranes by the phase inversion method. The prepared membranes were characterized by the contact angle measurement, X-ray photoelectron spectroscopy, gas permeation test, measurement of liquid entry pressure of water, and scanning electron microscopy. Finally, these membranes were tested for desalination by direct contact membrane distillation and the results were compared with those of commercial polytetraflouroethylene membrane. The effects of the nSMM type on the membrane morphology were identified, which enabled us to link the membrane morphology to the membrane performance. It was found that the nSMM2/PEI membrane yielded the best performance among the tested membranes. In particular, it should be emphasized that the above membrane was superior to the commercial one. (C) 2009 American Institute of Chemical Engineers AIChE J, 55: 3145-3151, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据