4.5 Article

Delayed detached-eddy simulation and analysis of supersonic inlet buzz

期刊

AIAA JOURNAL
卷 46, 期 1, 页码 118-131

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.32187

关键词

-

向作者/读者索取更多资源

Supersonic inlet buzz in a rectangular, mixed-compression inlet has been simulated on a 20 x 106 points mesh using the delayed detached-eddy simulation method, a version of detached-eddy simulation that ensures the attached boundary layers are treated using Reynolds-averaged Navier-Stokes equations. The results are compared with experimental data obtained during a previous campaign of wind-tunnel experiments. The comparison of unsteady data is performed thanks to phase averages, Fourier transforms, and wavelet transforms. The buzz observed at Mach 1.8, which occurred at a frequency of 18 Hz, is well reproduced. The shock oscillations, as well as the different flow features experimentally observed, are present in the simulation. The buzz frequency, as well as higher frequencies existing in the experimental pressure signals, are correctly predicted. The data issued from the simulation (time history of pressure fluctuations, pseudo-Schlieren, and three-dimensional visualizations) allow a better investigation of the inlet flowfield during buzz and a detailed description and physical analysis of this phenomenon. A description and an explanation of the mechanism at the origin of secondary oscillations that occur at a higher frequency during buzz are proposed. The crucial role of acoustic waves moving through the duct is shown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据