4.6 Article

Vortex-induced phase-slip dissipation in a toroidal Bose-Einstein condensate flowing through a barrier

期刊

PHYSICAL REVIEW A
卷 80, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.021601

关键词

-

资金

  1. (U.S.) Department of Energy [DE-AC52-06NA25396]

向作者/读者索取更多资源

We study superfluid dissipation due to phase slips for a Bose-Einstein condensate flowing through a repulsive barrier inside a torus. The barrier is adiabatically raised across the annulus, while the condensate flows with a finite quantized angular momentum. At a critical height, a vortex moves from the inner region and reaches the barrier to eventually circulate around the annulus. At a higher critical height, an antivortex also enters into the torus from the outer region. Both vortex and antivortex decrease the total angular momentum by leaving behind a 2 pi phase slip. When they collide and annihilate or orbit along the same loop, the condensate suffers a global 2 pi phase slip, and the total angular momentum decreases by one quantum. In hydrodynamic regime, the instability sets in when the local superfluid velocity equals the sound speed inside the barrier region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据