4.7 Article

Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China

期刊

AGRICULTURAL WATER MANAGEMENT
卷 117, 期 -, 页码 33-42

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agwat.2012.10.013

关键词

The Loess Plateau; Soil water; Vegetation restoration; Relative difference; Rank correlation coefficient; Gray relational grade

资金

  1. Program of the Innovation Team Project of the Ministry of Education

向作者/读者索取更多资源

Conservation of soil water and restoration of vegetation have long been major subjects of concern on the northern Loess Plateau. Revegetation with species such as Korshinsk peashrub (KOP) and purple alfalfa (ALF), as well as with natural revegetation of fallow areas (NAF) have been used extensively. This paper examines the temporal stability of soil water storage (SWS) under these different revegetation types, including under millet (MIL) crops for comparison, grown in adjacent plots on a hillslope intending to provide information relevant to the strategic guidance of revegetation and soil water management practices. SWS was measured at 10-cm intervals in the soil profile to a depth of one meter using a neutron probe on 11 occasions between 2010 and 2011. The results indicated that: (1) time-averaged SWS relative to MIL decreased in the order of KOP (49.4 mm), ALF (32.4 mm) and NAF (14.9 mm) implying that shortages of soil water were induced largely by revegetation and were affected by the plant species. (2) Frequency distributions showed that points with probabilities of 0.5 were not stable between extreme soil water conditions; however, this result might be mitigated or avoided by increasing the sampling density and/or conducting measurement over a longer period. (3) Based on relative difference analysis, the most stable data points underestimated the mean SWS of the plots but were still valuable for precisely estimating the mean SWS of the experimental plot; in addition, among methods for estimating the plot average using representative points, directly using the value of relative difference or their standard deviation, or an index of temporal stability or the mean absolute bias error, no one method consistently performed better than another. (4) ALF presented the most temporally stable patterns among all types of revegetation tested, and vegetation cover and aboveground biomass were the main factors affecting SWS temporal stability. (5) Temporally stable points were located at the mid-slope of the plots. In conclusion, when temporal stability theory was applied to sloping lands mid-slope sampling is likely to give the best results but vegetation characteristics, and in particular vegetation cover should be highlighted. (c) 2012 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据