4.7 Article

Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields

期刊

AGRICULTURAL WATER MANAGEMENT
卷 107, 期 -, 页码 54-65

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2012.01.007

关键词

Soil water content; Soil nitrate content; Simulated drainage; Simulated nitrate leaching; STICS model; Agricultural practices; Alluvial plain; Groundwater

资金

  1. ECOBAG: 'Zone atelier Adour Garonne'

向作者/读者索取更多资源

The performance of the STICS soil-crop model for the dynamic prediction of soil water content (SWC) and soil mineral nitrogen (SMN) in the root zone (120 cm) of seven agricultural fields was evaluated using field measurements in a coarse-grained alluvial aquifer of the Garonne River floodplain (southwestern France) from 2005 to 2007. The STICS model was used to simulate drainage and nitrate concentration in drainage water in all the agricultural fields of the study area, in order to quantify and assess the temporal and spatial variability of nitrate leaching into groundwater. Simulations of SWC and SMN in the seven monitored fields were found to be satisfactory as indicated by root mean square error (RMSE) and model efficiency being 6.8 and 0.84% for SWC and 22.8 and 0.92% for SMN, respectively. On average, SWC was slightly overestimated by a mean difference of 10 mm (3%) and there was almost no bias in SMN estimations (<0.5%). These satisfactory results demonstrate the potential for using the STICS model to accurately simulate nitrate leaching. Across the study area, simulated drainage and nitrate concentration were extremely variable from one field to another. For some fields, simulated mean annual nitrate concentration in drainage water exceeded 300 mg NO3- L-1 and predicted nitrate leaching was close to 100 kg N ha(-1), while other fields had very low nitrate losses. About 15% of the farmers' fields were responsible for 60-70% of nitrate leaching. The SMN in late autumn, before winter drainage, was found the main determining factor explaining this variability. This situation may be attributed to unsatisfactory cumulative nitrogen management over the medium term. Ineffective nitrogen management was found to be more detrimental than a single annual incident of overfertilization, particularly in situations of deep soils and in cases of low or highly variable drainage between years. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据