4.7 Article

Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 176, 期 -, 页码 38-49

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agrformet.2013.03.003

关键词

Solar radiation; Humidity; Longwave radiation; Air temperature; Global land surface modeling

资金

  1. National Oceanographic and Atmospheric Administration [NA08OAR4320899]
  2. Office of Integrative Activities
  3. Office Of The Director [1443108] Funding Source: National Science Foundation

向作者/读者索取更多资源

We assessed the performance of the MTCLIM scheme for estimating downward shortwave (SWdown) radiation and surface humidity from daily temperature range (DTR), as well as several schemes for estimating downward longwave radiation (LWdown), at 50 Baseline Solar Radiation Network stations globally. All of the algorithms performed reasonably well under most climate conditions, with biases and mean absolute errors generally less than 3% and 20%, respectively, over more than 70% of the global land surface. However, estimated SWdown had a bias of -26% at coastal sites, due to the ocean's moderating influence on DTR, and in continental interiors, SWdown had an average bias of -15% in the presence of snow, which was reduced by MTCLIM 4.3's snow correction if local topography was taken into account. Vapor pressure (VP) and relative humidity (RH) had large negative biases (up to -50%) under the most arid conditions. At coastal sites, LWdown had positive biases of up to 10%, while biases at interior sites exhibited a weak dependence on DTR. The largest biases in both RH (negative) and LWdown (positive) were concentrated over the world's deserts, while smaller positive humidity biases were found over tropical and boreal forests. Evaluation of the diurnal cycle showed negative morning, and positive afternoon biases in vapor pressure deficit and LWdown related to errors in the interpolation of the diurnal air temperature. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据