4.6 Article

Selective and efficient quantum process tomography

期刊

PHYSICAL REVIEW A
卷 80, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.032116

关键词

-

向作者/读者索取更多资源

In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky et al. [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the chi matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the chi matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据