4.6 Article

Theory of Auger decay by laser-dressed atoms

期刊

PHYSICAL REVIEW A
卷 80, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.033410

关键词

-

资金

  1. National Science Foundation [PHY-0701372]

向作者/读者索取更多资源

We devise an ab initio formalism for the quantum dynamics of Auger decay by laser-dressed atoms which are inner-shell ionized by extreme ultraviolet (xuv) light. The optical dressing laser is assumed to be sufficiently weak such that ground-state electrons are neither excited nor ionized by it. However, the laser has a strong effect on continuum electrons which we describe in strong-field approximation with Volkov waves. The xuv light pulse has a low peak intensity and its interaction with the atom is treated as a one-photon process. The quantum dynamics of the inner-shell hole creation with subsequent Auger decay is given by equations of motion (EOMs). For this paper, the EOMs are simplified in terms of an essential-states model which averages over magnetic subshells and is solved analytically. We apply our theory to the M4,5N1N2,3 Auger decay of a 3d hole in a krypton atom. The orbitals are approximated by scaled hydrogenic wave functions. A single attosecond pulse produces 3d vacancies which Auger decay in the presence of an 800 nm laser with an intensity of 10(13) W cm(-2). We compute the Auger electron spectrum and assess the convergence of the various quantities involved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据